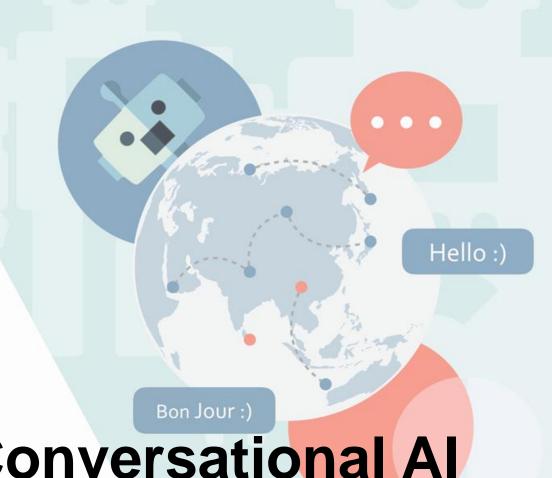


陳縕儂 Yun-Nung (Vivian) Chen

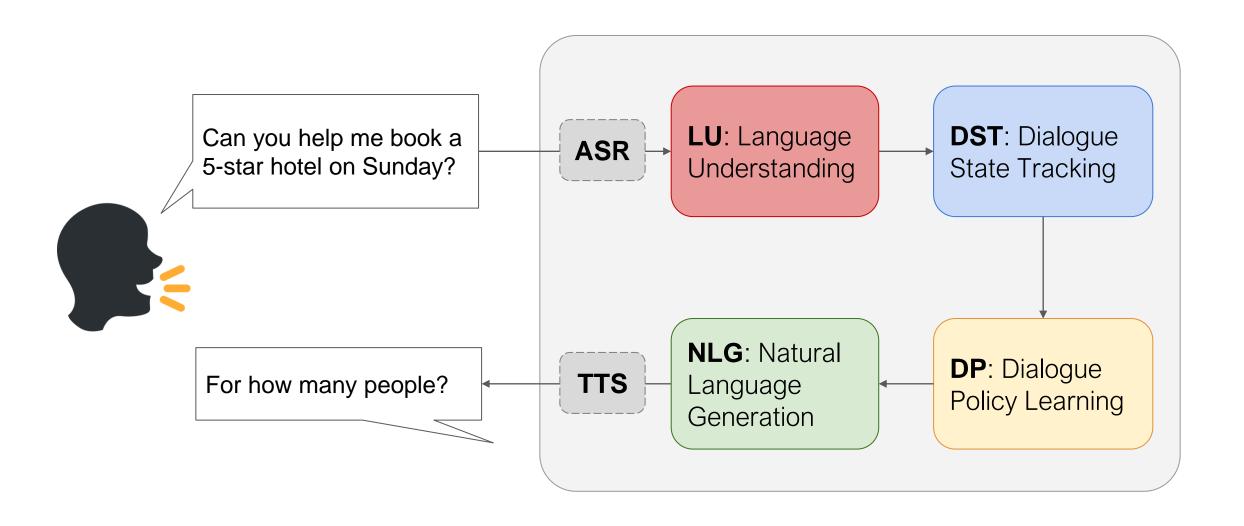
October 20th, 2023

Towards Human-Like Conversational Al

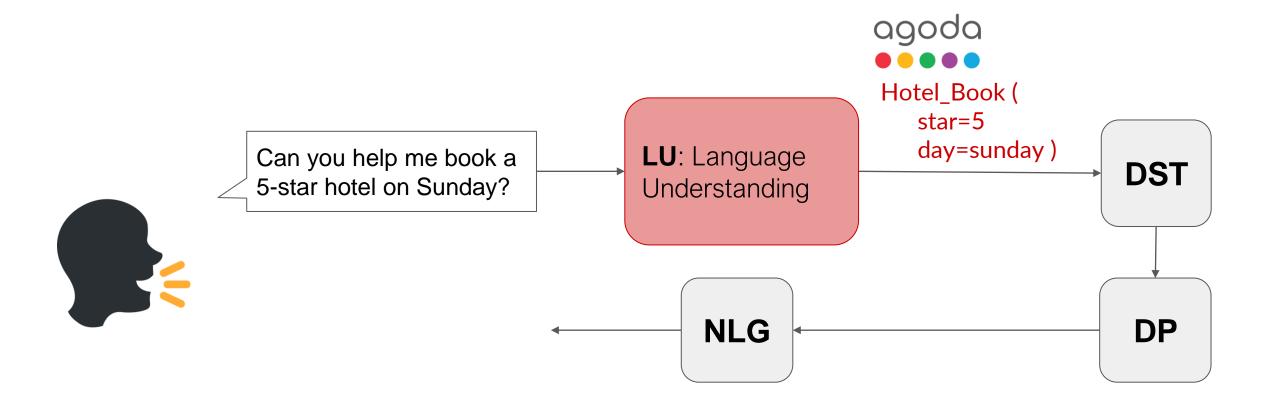
Advancing Understanding & Interaction



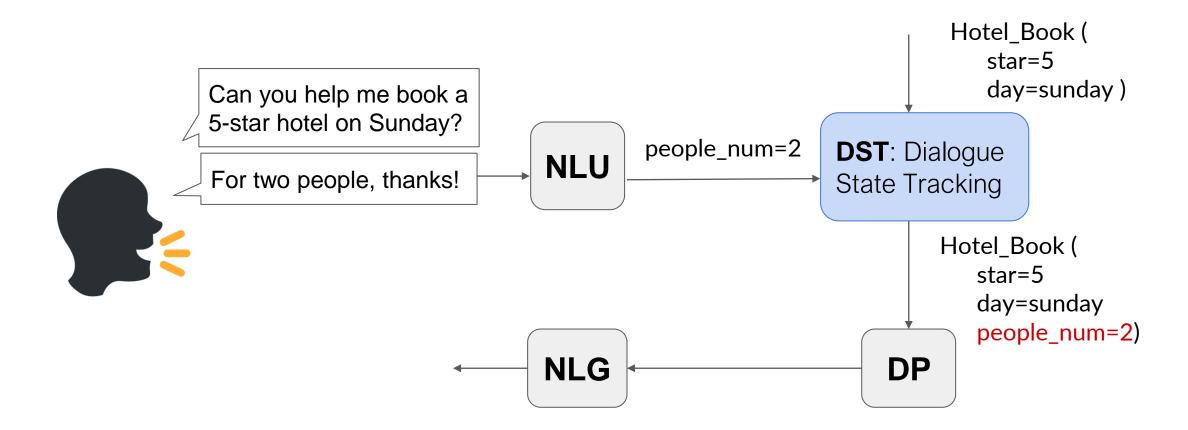
Task-Oriented Dialogue Systems (Young, 2000)



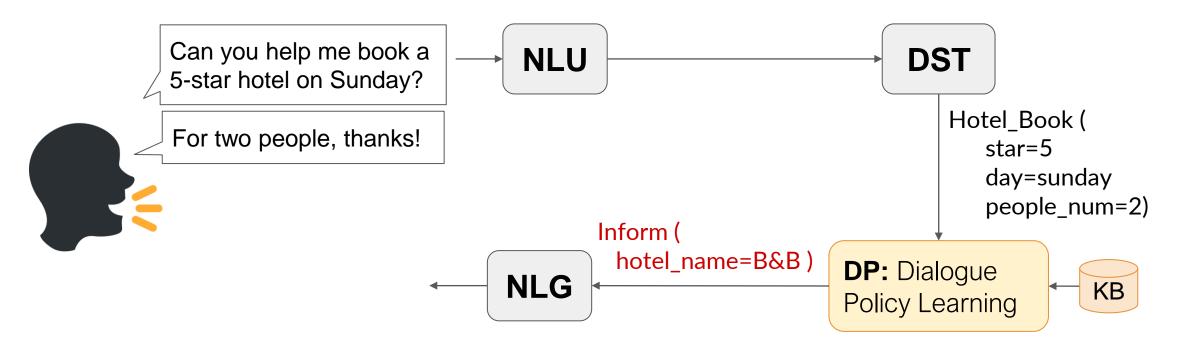
Language Understanding (LU)



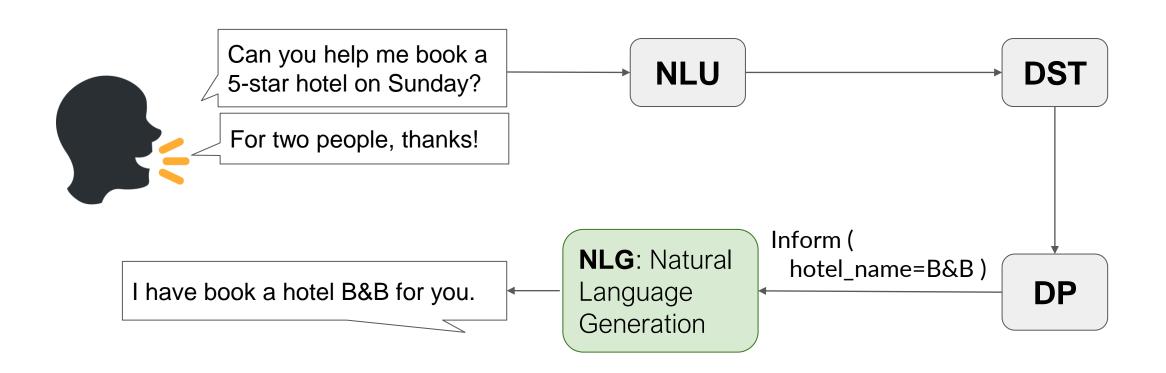
Dialogue State Tracking

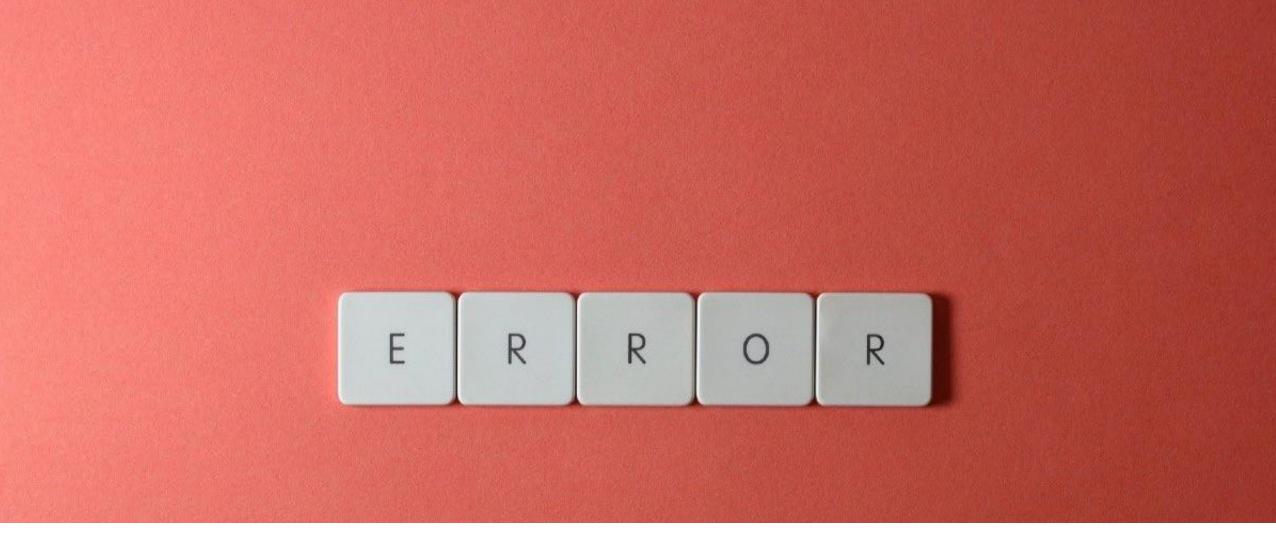


Dialogue Policy Learning



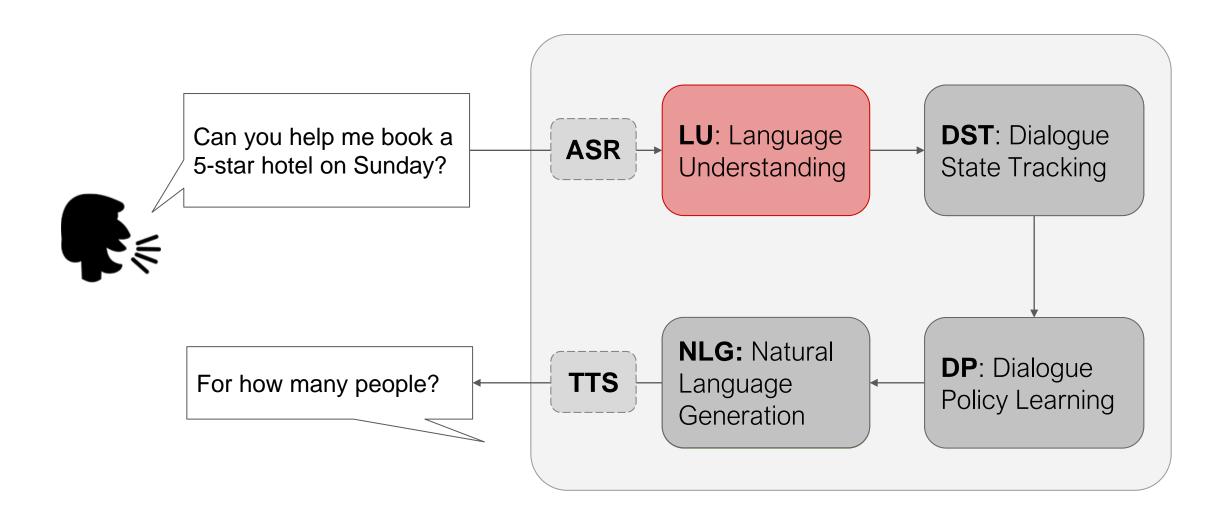
Natural Language Generation



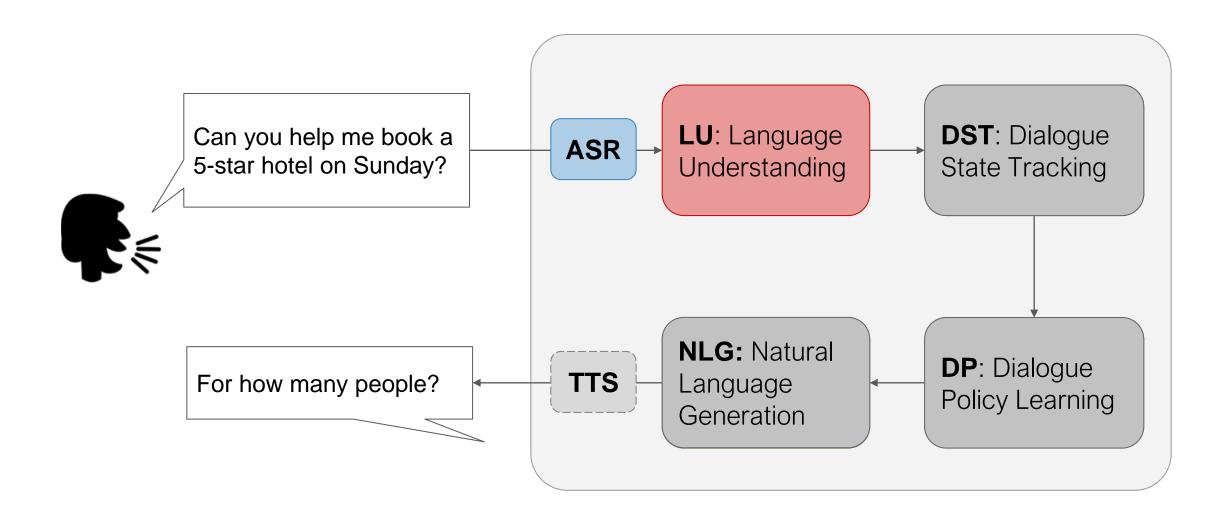


Understanding

Task-Oriented Dialogue Systems (Young, 2000)

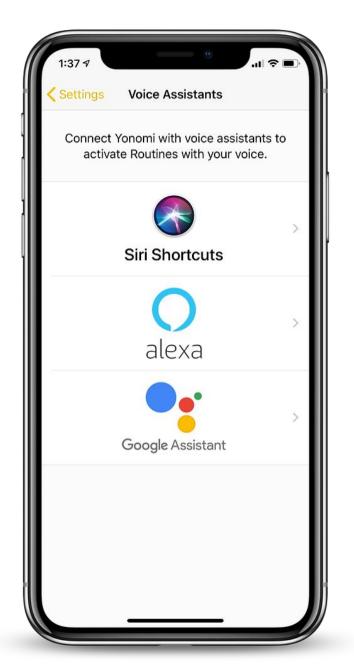


Task-Oriented Dialogue Systems (Young, 2000)



Recent Advances in NLP

- Pre-trained models on text
 - ELMo, BERT, RoBERTa, XLM, GPT, etc.



Mismatch between Written and Spoken Languages

Testing Spoken language y a y h p a c m Include recognition errors

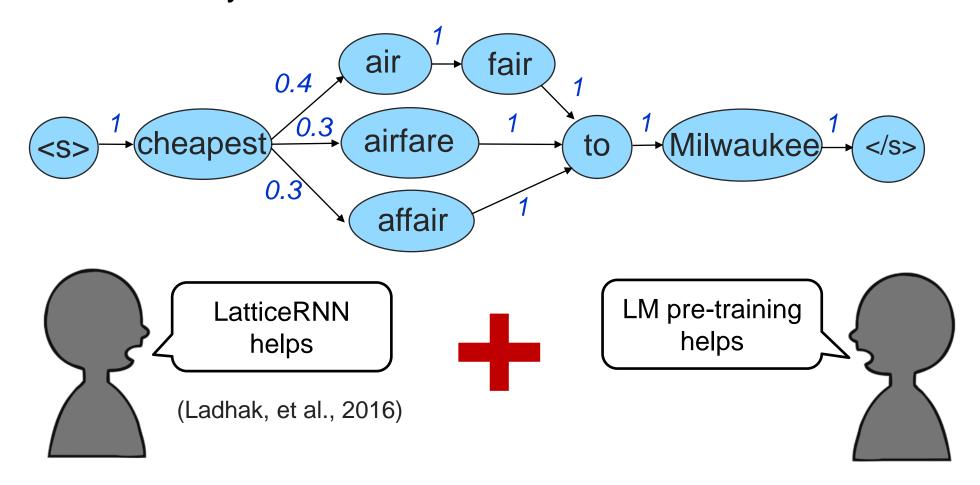
- Goal: ASR-Robust Embeddings
 - ✓ learning spoken embeddings
 - ✓ better performance on spoken language understanding tasks

Solution: LatticeLM (Huang & Chen, ACL 2020)

https://github.com/MiuLab/LatticeLM

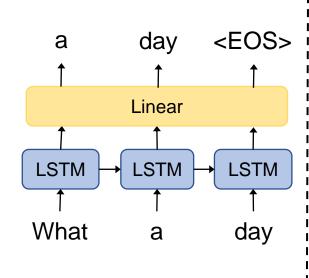
ASR Lattices for Preserving Uncertainty

Idea: lattices may include correct words

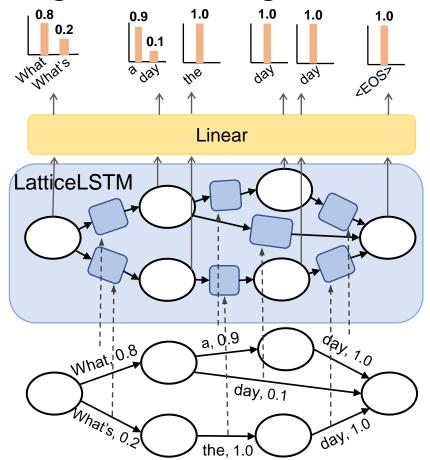


Chao-Wei Huang and Yun-Nung Chen, "Learning Spoken Language Representations with Neural Lattice Language Modeling," in *Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.

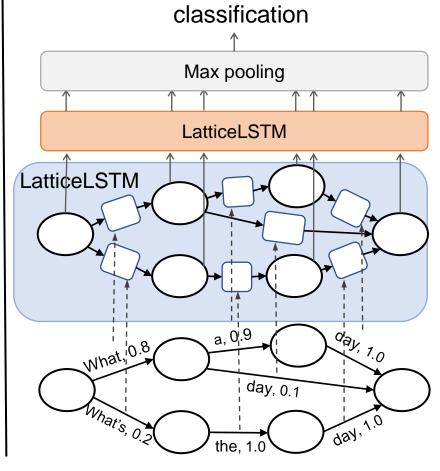
LatticeLM: Efficient Two-Stage Pre-Training



Stage 2: Pre-Training on Lattices

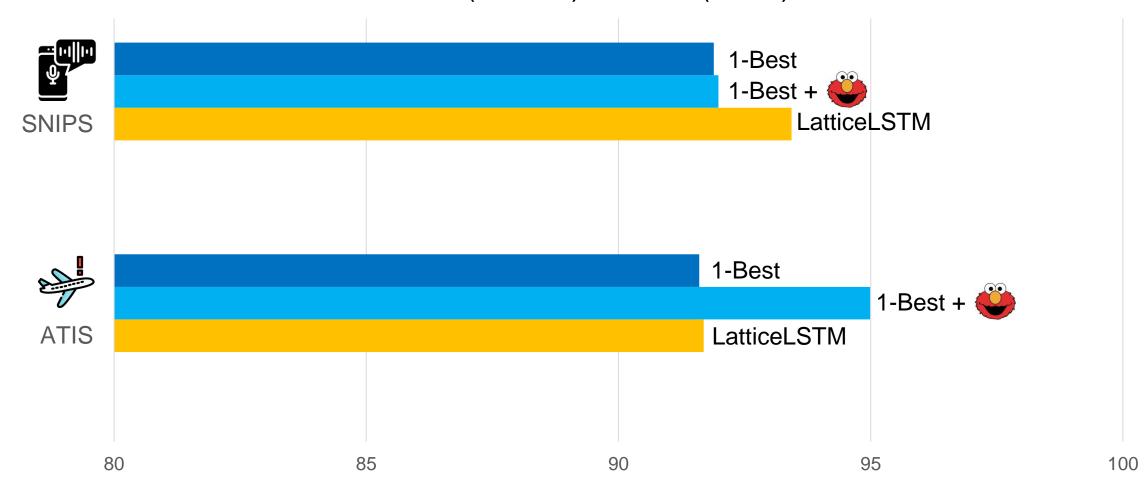


Fine-Tuning

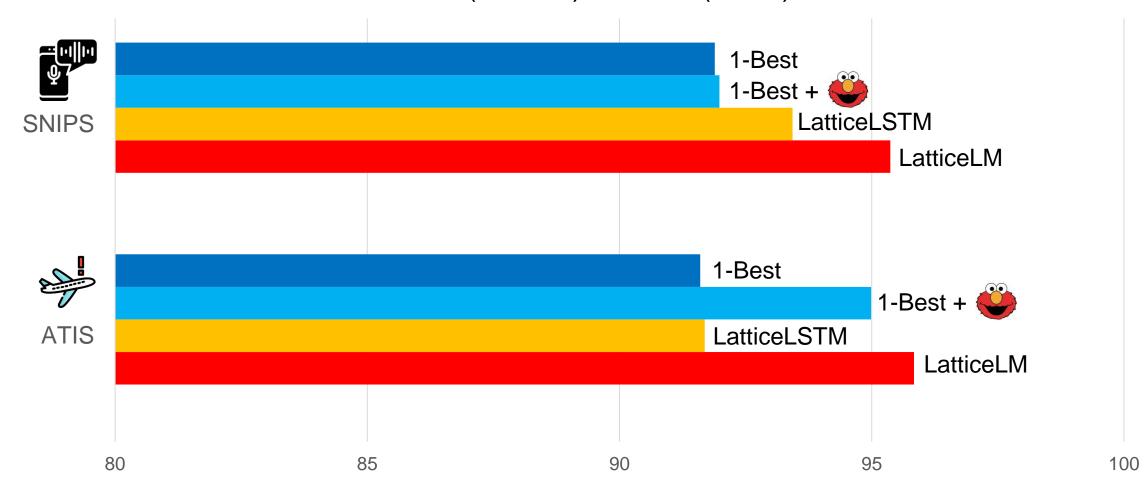


Chao-Wei Huang and Yun-Nung Chen, "Learning Spoken Language Representations with Neural Lattice Language Modeling," in *Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.

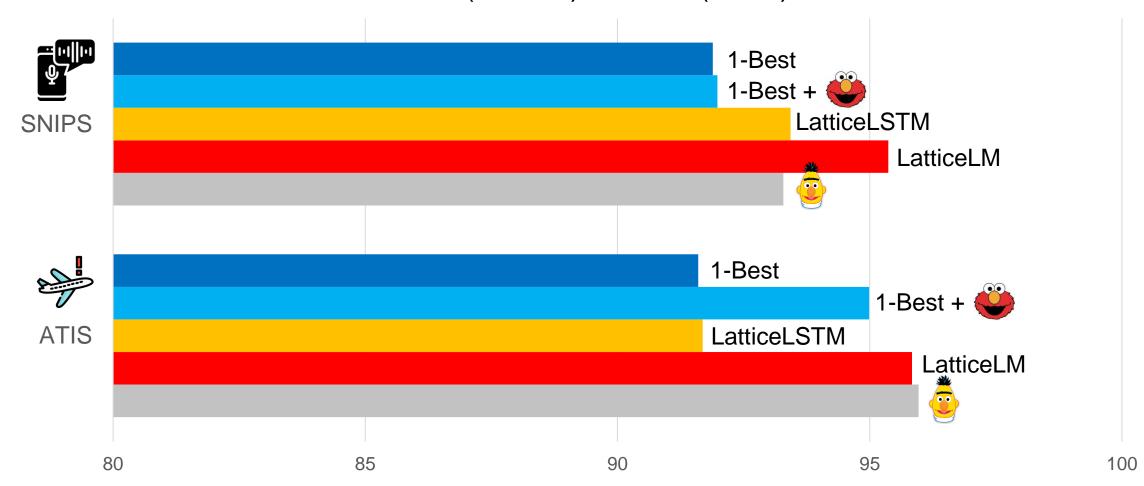
- Intent Prediction
 - Word Error Rate: 45.6% (SNIPS); 15.6% (ATIS)



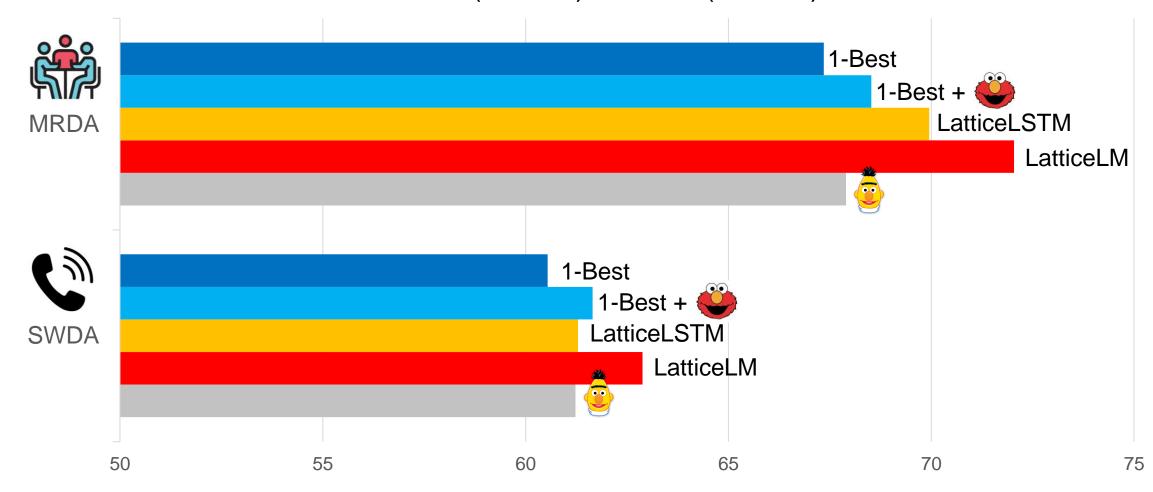
- Intent Prediction
 - Word Error Rate: 45.6% (SNIPS); 15.6% (ATIS)



- Intent Prediction
 - Word Error Rate: 45.6% (SNIPS); 15.6% (ATIS)



- Dialogue Act Prediction
 - Word Error Rate: 32.0% (MRDA); 28.4% (SWDA)



What if we only have texts from ASR?

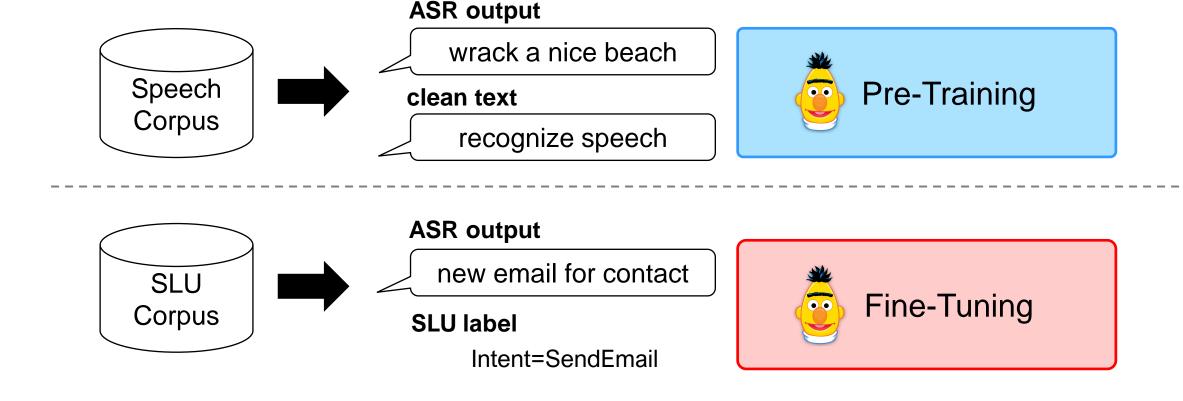
Solution: Contrastive Learning for ASR-Robust Embeddings

(Chang & Chen, INTERSPEECH 2022)

https://github.com/MiuLab/SpokenCSE

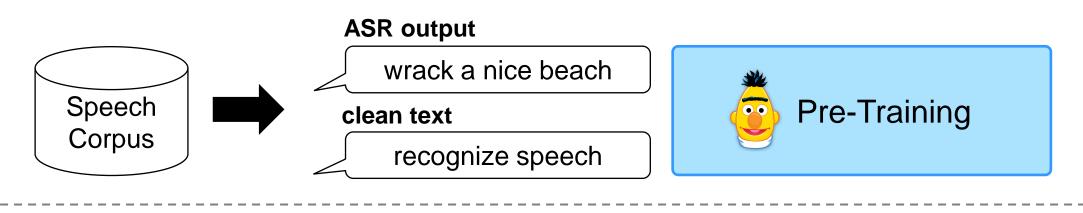
Improving ASR Robustness of Embeddings

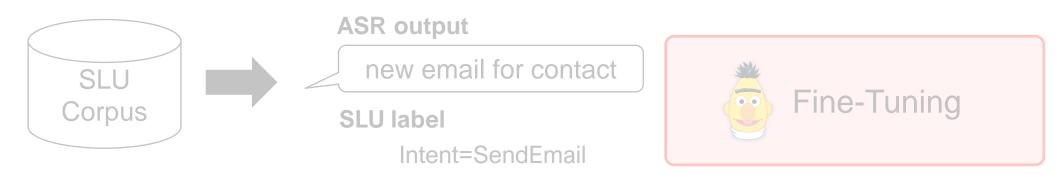
Idea: adapt embeddings robust to errors with only textual information



Improving ASR Robustness of Embeddings

Idea: adapt embeddings robust to errors with only textual information

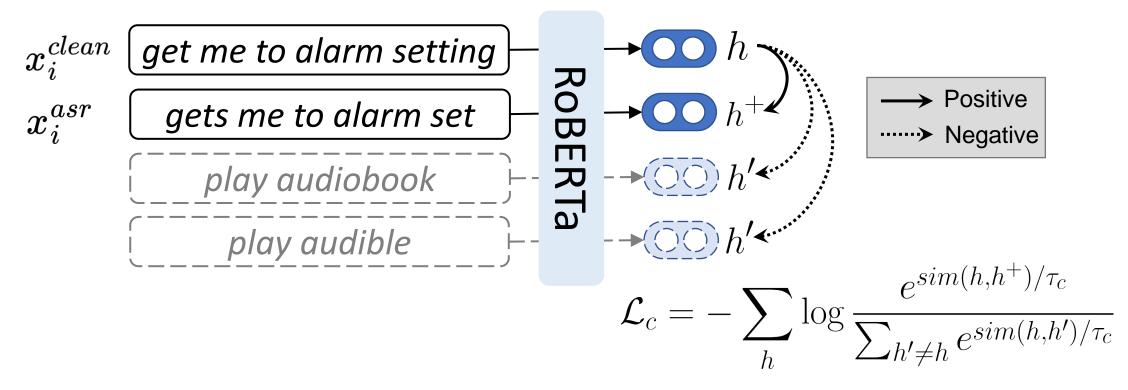




Idea: contrastive pre-training for spoken scenarios

Contrastive Pre-Training

Idea: ASR outputs have similar embeddings as their clean texts

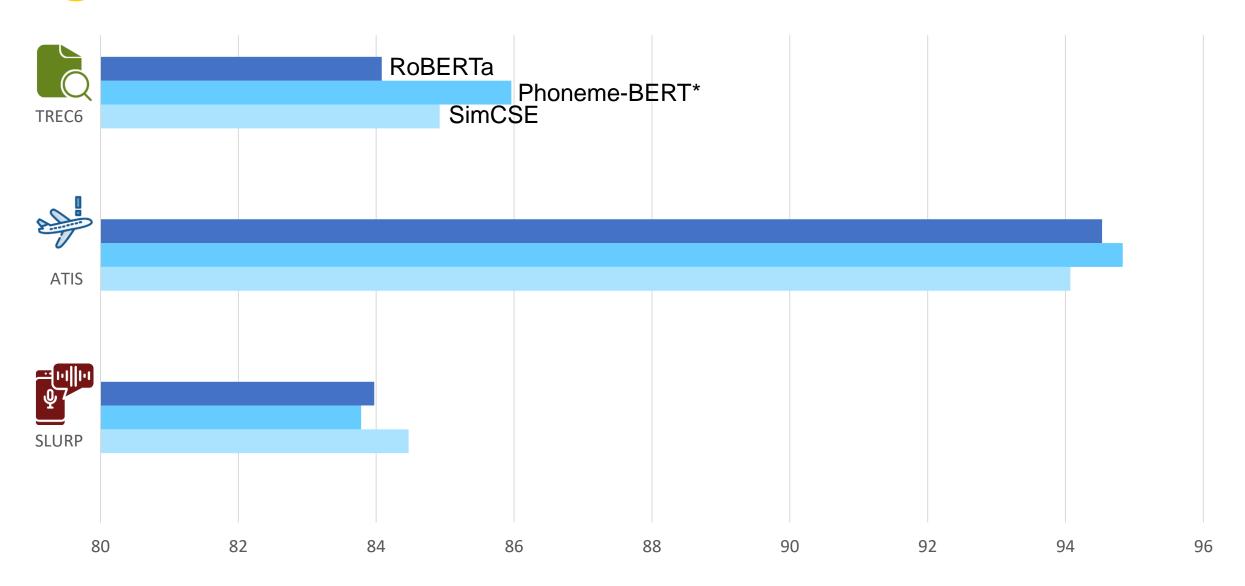


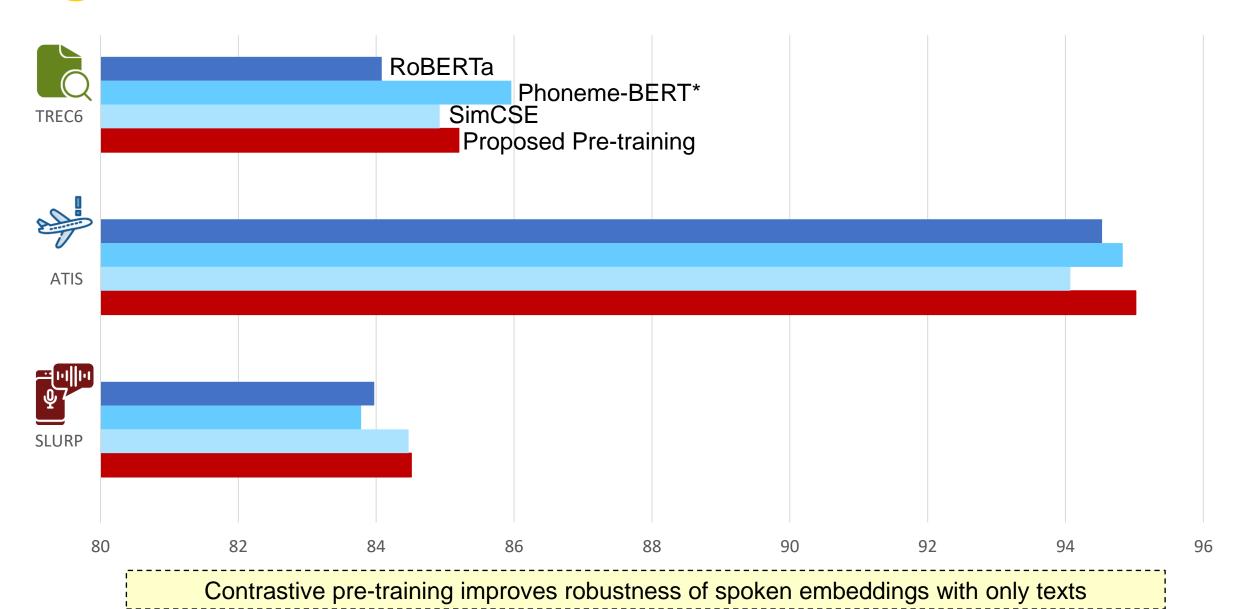
ullet Pre-training objective: $\mathcal{L}_{pt} = \mathcal{L}_c + \lambda_{mlm} \cdot \mathcal{L}_{mlm}$

prevent catastrophic forgetting

- SLU data
 - Synthesized TREC6 (WER=29%) & ATIS (WER=32%)
 - SLURP: Spoken Language Understanding Resources Package (WER=25%)

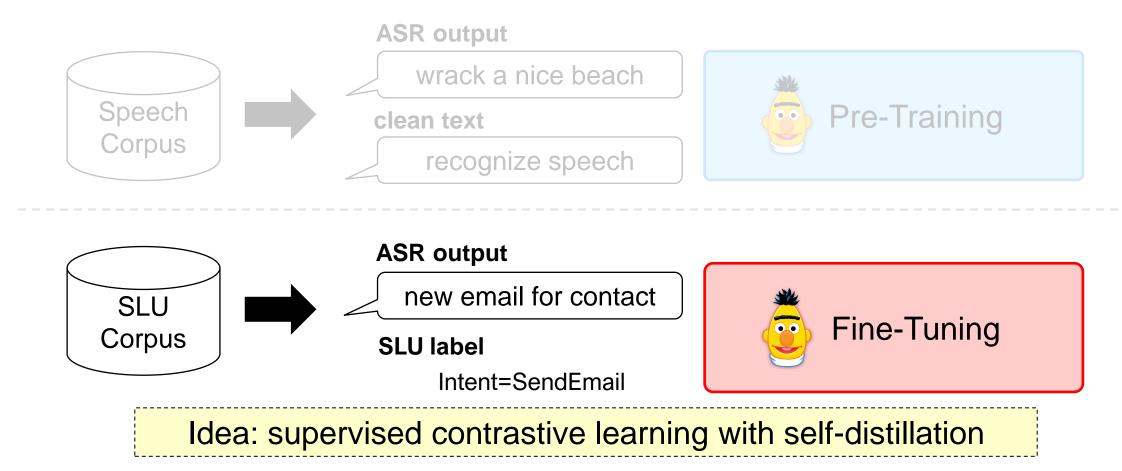
Dataset	#Class	Avg. Length	Train	Test
TREC6	6	8.89	5,452	500
ATIS	22	11.14	4,978	893
SLURP	18 * 46	8.89	50,628	10,992





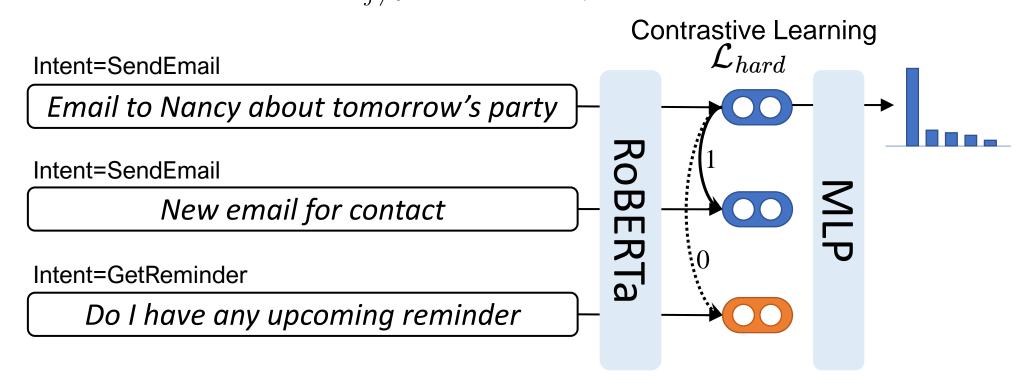
Improving ASR Robustness of Embeddings

Idea: adapting embeddings robust to misrecognitions



Supervised Contrastive Learning

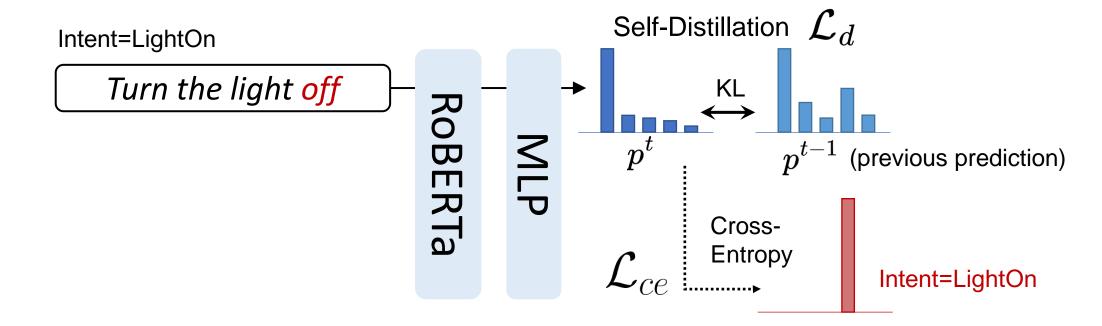
- Idea: data with the same label should be close to each other
- Objective: $\mathcal{L}_{hard} = -\sum_{i} \sum_{j \neq i} 1_{y_i = y_j} \log \frac{e^{sim(h_i, h_j)/\tau_{sc}}}{\sum_{k \neq i} e^{sim(h_i, h_k)/\tau_{sc}}}$



Self-Distillation

Issue: misrecognitions may lead to wrong or vague intents

Objective:
$$\mathcal{L}_d = \sum_i KL(p_i^{t-1} \| p_i^t)$$

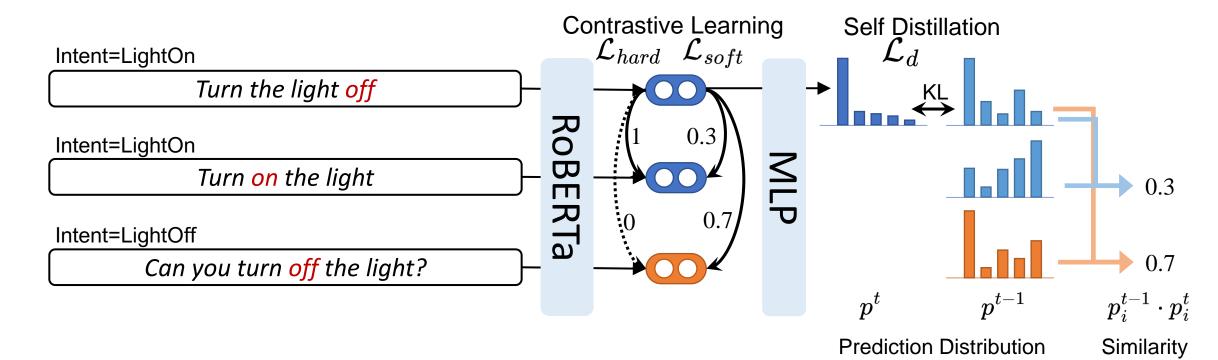


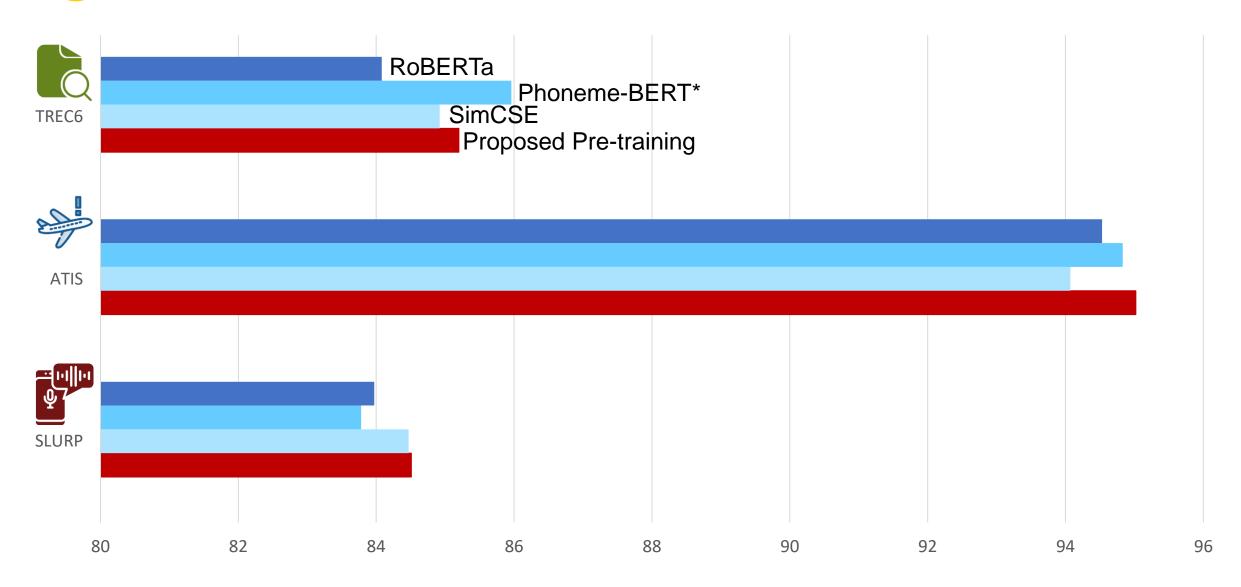
Supervised Contrastive with Self-Distillation

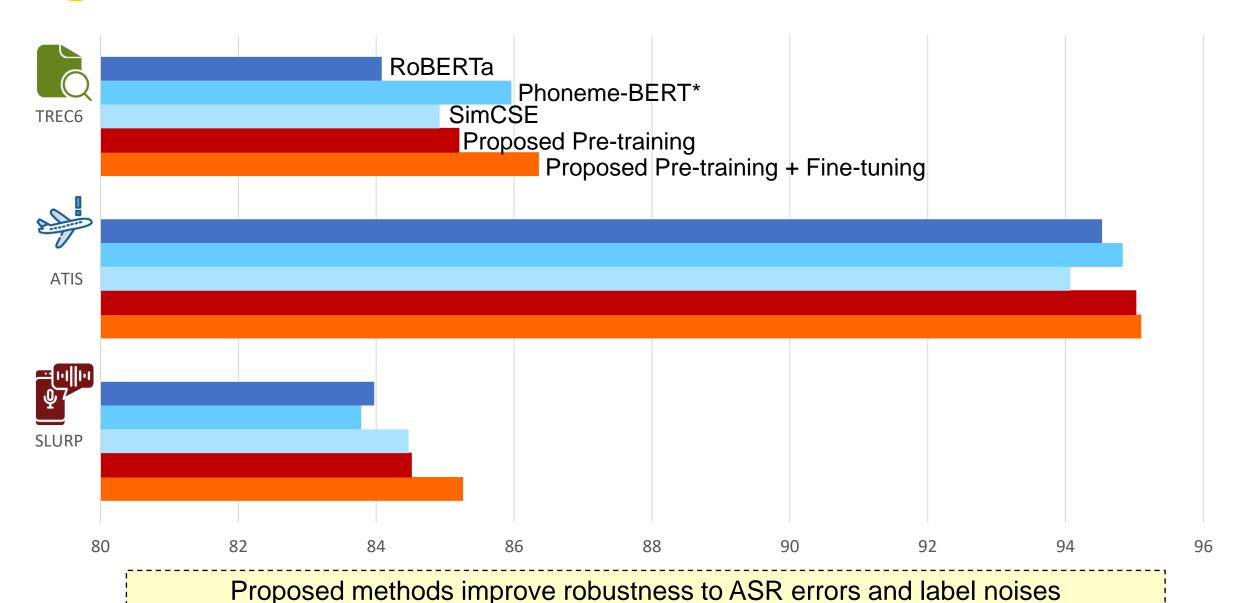
ullet Issue: noisy labels also affect ${\cal L}_{hard}$

$$\mathcal{L}_{soft} = -\sum_{i} \sum_{j \neq i} \underbrace{(p_i^{t-1} \cdot p_j^{t-1})}_{(\mathbf{1}_{y_i = y_i})} \log \frac{e^{sim(h_i, h_j)/\tau_{sc}}}{\sum_{k \neq i} e^{sim(h_i, h_k)/\tau_{sc}}}$$

ullet Fine-tuning objective: $\mathcal{L}_{ft} = \mathcal{L}_{ce} + \lambda_d \mathcal{L}_d + \lambda_{hard} \mathcal{L}_{hard} + \lambda_{soft} \mathcal{L}_{soft}$







Ablation Study

$$\mathcal{L}_{pt} = \mathcal{L}_{c} + \lambda_{mlm} \cdot \mathcal{L}_{mlm}$$

$$\mathcal{L}_{ft} = \mathcal{L}_{ce} + \lambda_{d}\mathcal{L}_{d} + \lambda_{hard}\mathcal{L}_{hard} + \lambda_{soft}\mathcal{L}_{soft}$$

Pre-Training	Fine-Tuning	SLURP	ATIS	TREC6
Full	Full	85.26	95.10	86.36
No \mathcal{L}_{mlm}	Full	84.83	93.75	85.32
No \mathcal{L}_c	Full	85.15	95.00	85.53
Full	No $\mathcal{L}_{hard} + \mathcal{L}_{soft}$	85.14	94.83	86.08
Full	No $\mathcal{L}_d + \mathcal{L}_{soft}$	84.77	94.75	85.60
Full	No \mathcal{L}_{soft}	84.81	94.65	86.20

All parts in the proposed approach are necessary to achieve better SLU performance.

Robustness

- ✓ LatticeLM for preserving uncertainty
- ✓ Contrastive learning with only textual information

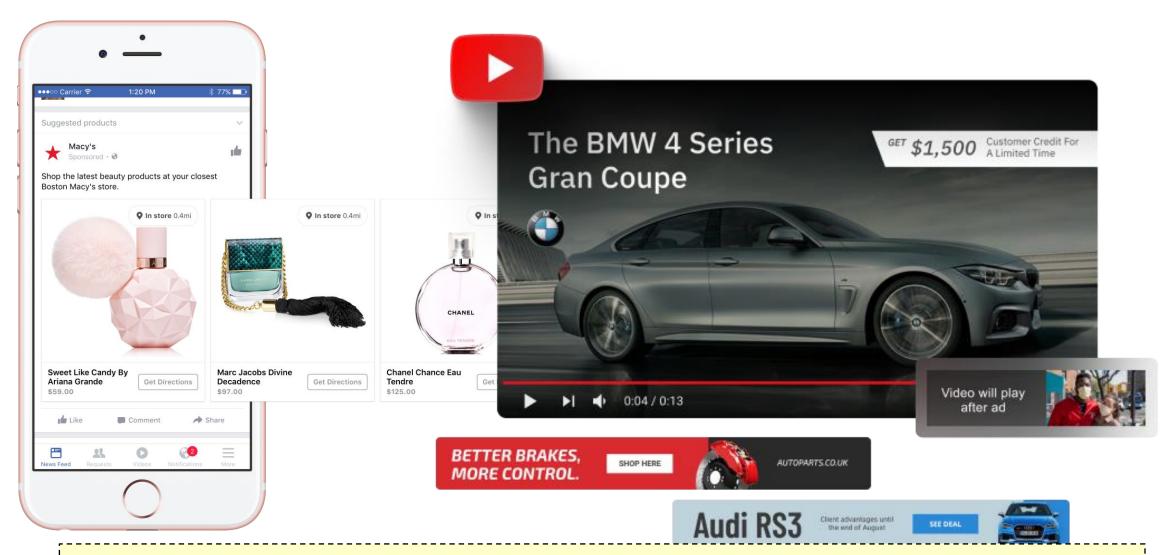
Contrastive Pre-training learns error-invariant sentence embeddings

 Supervised CL with Self Distillation improves robustness to noises from ASR and labels

Practicality

Scalibility

Current Product Advertisements



Machine-based marketing sometimes interrupts user experience

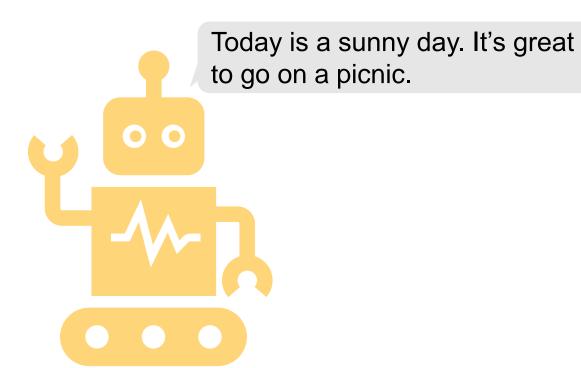
Salesperson: Discover Business Potential

- Human salesperson is capable of
 - mining business-related intentions from customers via chatting
 - smoothly promoting the related product through conversations

Two Types of Dialogue Systems

Open-Domain Chatting

Task-Oriented





Issue: most prior work focused on only one type of dialogue systems

Solution: SalesBot: Transitioning from Open-Domain to Task-Oriented Dialogues

(Chiu et al., ACL 2022)

https://github.com/MiuLab/SalesBot

Simulated User

Simulated Salesperson

My son is 2 and a half. He is handful, but I love him so much.

That's adorable. I have a 2-year-old son and he's the same way. Do you have any pets?

No, I don't. I work too much to have time for one. How about you?

I work a lot too. I'm a stay at home mom. What do you do for work?

I work at a library. It's a lot of fun, and I get to meet lots of interesting people.

That sounds like a fun job. I bet you meet some interesting people at the library. What else do you like to do?

I like to read a lot. I also like to go to the movies. What about yourself?

Are you interested in watching any movie?

I'm looking for a movie to watch. A regular showing would be fine.

Where are you located?

I'm in San Francisco, please look for movies there.

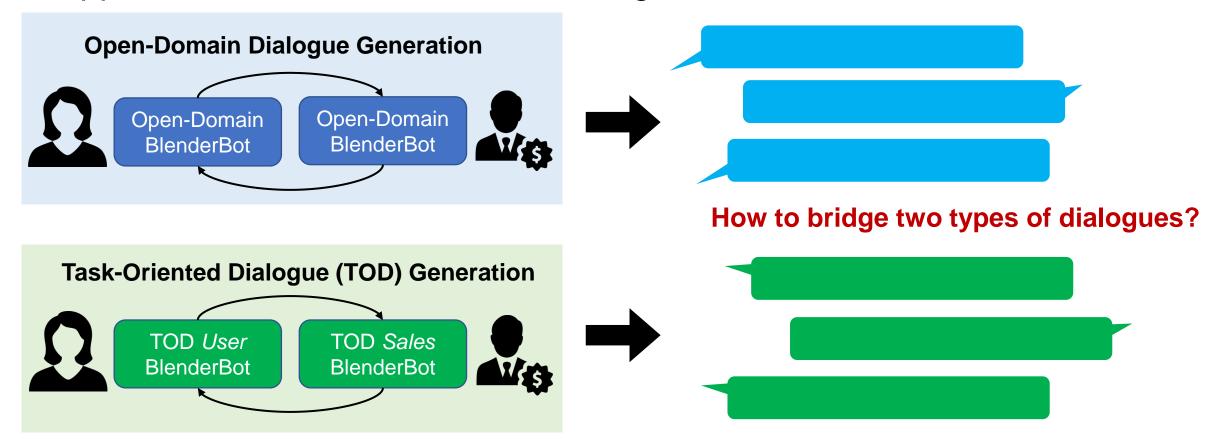
There are [COUNT] movies you can watch. What do you think of [MOVIE_NAME]?

Open-Domain

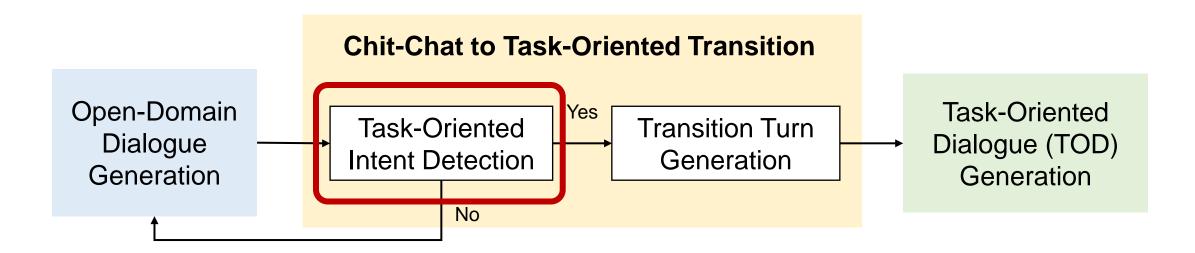
Task-Oriented

Such data can allow us to train a conversational agent with a salesperson's capability

- Motivation: no existing data with the property
- Approach: simulate the scenarios to generate unlimited data



Ssu Chiu, Maolin Li, Yen-Ting Lin, and Yun-Nung Chen, "SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues," in *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2022.



- Challenges
 - When to switch to the task-oriented dialogue system?
 - → Task-Oriented (Implicit) Intent Detection
 - 2 How to smoothly switch from chit-chat to task-oriented dialogues?
 - → Transition Turn Generation

Task-Oriented (Implicit) Intent Detector

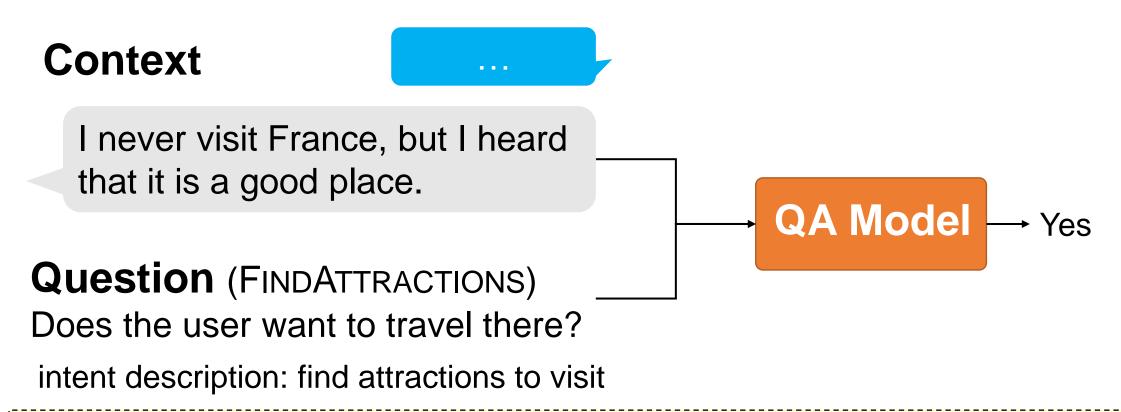
Goal: identify if the user is likely to have task-related intents

Issue: no data with annotated implicit intents

Ssu Chiu, Maolin Li, Yen-Ting Lin, and Yun-Nung Chen, "SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues," in *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2022.

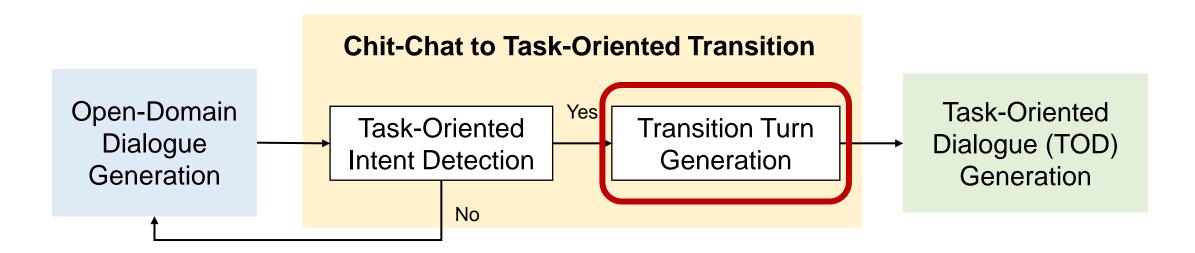
Zero-Shot Intent Detector

Idea: leverage QA system's capability



Intent-associated questions are naively generated from their descriptions

Ssu Chiu, Maolin Li, Yen-Ting Lin, and Yun-Nung Chen, "SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues," in *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2022.



- Challenges
 - When to switch to the task-oriented dialogue system?
 - → Task-Oriented (Implicit) Intent Detection
 - 2 How to smoothly switch from chit-chat to task-oriented dialogues?
 - → Transition Turn Generation

Transition Turn Generation

Generative-based Generation:

Training data: OTTers (Source Topic → Transition → Target Topic)

Entity Path: outside - garden - flower

User A **Source Topic:** I spend a lot of time **outside**. (Source Topic)

User B Transition: I like the outdoors as well, especially gardening. It destresses me.

Target Topic: I enjoy relaxing and getting **flowers**.

Entity Path: seafood - Swedish fish - candy

User A **Source Topic:** I like **seafood** a lot.

User B Transition: Since you like seafood, is Swedish fish a candy that you might enjoy?

Target Topic: I have no self control when it comes to **candy**.

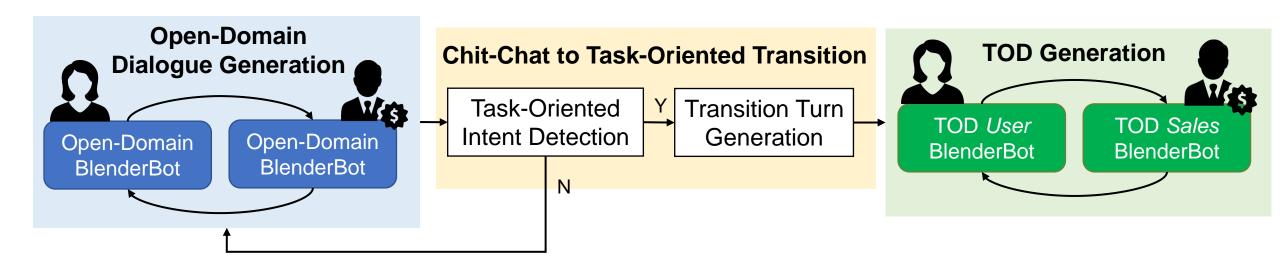
Entity Path: engagement - marriage - child

User A **Source Topic:** I think I am getting engaged soon.

User B Transition: I have two children from a previous marriage

Target Topic: My children are my life.

SalesBot Simulation Framework



Contribution: simulate unlimited dialogues transitioning from chit-chat to task-oriented

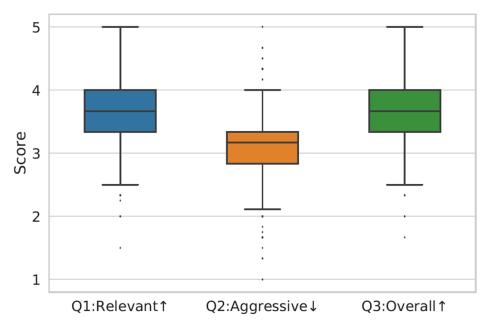
Quality?

Ssu Chiu, Maolin Li, Yen-Ting Lin, and Yun-Nung Chen, "SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues," in *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2022.

Human Evaluation

Overall dialogue quality

- Q1 Relevance: How relevant is the recommended service to the conversation context?
- Q2 Aggressiveness: How aggressive is the salesperson's communication strategy?
- Q3 Overall: Do you think the conversation is overall a good example of making a sales recommendation?



Average scores over 3 workers (4000 dialogues)

Can we further improve the dialogue quality?

Idea: LLMs for Scalability

Simulated User

Simulated Salesperson

My son is 2 and a half. He is handful, but I love him so much.

That's adorable. I have a 2-year-old son and he's the same way. Do you have any pets?

No, I don't. I work too much to have time for one. How about you?

I work a lot too. I'm a stay at home mom. What do you do for work?

I work at a library. It's a lot of fun, and I get to meet lots of interesting people.

That sounds like a fun job. I bet you meet some interesting people at the library. What else do you like to do?

I like to read a lot. I also like to go to the movies. What about yourself?

Are you interested in watching any movie?

I'm looking for a movie to watch. A regular showing would be fine.

Where are you located?

I'm in San Francisco, please look for movies there.

There are [COUNT] movies you can watch. What do you think of [MOVIE_NAME]?

Idea: LLMs for Scalability

Simulated User

Simulated Salesperson

My son is 2 and a half. He is handful, but I love him so much.

That's adorable. I have a 2-year-old son and he's the same way. Do you have any pets?

No, I don't. I work too much to have time for one. How about you?

I work a lot too. I'm a stay at home mom. What do you do for work?

I work at a library. It's a lot of fun, and I get to meet lots of interesting people.

That sounds like a fun job. I bet you meet some interesting people at the library. What else do you like to do?

I like to read a lot. I also like to go to the movies. What about yourself?

Are you interested in watching any movie

I'm lookin

Expanding topics for great coverage via LLM rewriting

where are you located.

I'm in San Francisco, please look for movies there.

There are [COUNT] movies you can watch. What do you think of [MOVIE_NAME]?

Idea: LLMs for Scalability

Simulated User

Simulated Salesperson

My son is 2 and a half. He is handful, but I love him so much.

That's adorable. I have a 2-year-old son and he's the same way. Do you have any pets?

No, I don't. I work too much to have time for one. How about you?

│ I work a lot too. I'm a stay at home mom. What do you do for work?

I work at a library. It's a lot of fun, and I get to meet lots of interesting people.

That sounds like a fun job. I bet you meet some interesting people at the library. What else do you like to do?

I like to read a lot. I also like to go to the movies. What about yourself?

Are you interested in watching any movie?

I'm looking for a movie to watch. A regular showing would be fine.

Increasing #turns for smooth transition via LLM rewriting

I'm in San Francisco, please look for movies there.

There are [COUNT] movies you can watch. What do you think of [MOVIE_NAME]?

Solution: SalesBot 2.0: A Human-Like Intent Guided Chit-Chat Dataset (Chang & Chen, 2023)

SalesBot 1.0

U: Yes, we grew up together. We are both going to U of Michigan this fall.

A: That's awesome! I'm hoping to start my own business soon. What do you do for a living?

U: I work at a grocery store. What kind of business are you looking to start? I hope it works out for you.

A: I'm thinking of starting a sports bar. I love sports and I think it would be a great place to start.

Chit-Chat Dialogue Revision

U: Yes, we grew up together. We are both going to U of Michigan this fall.

A: That's great! What are you planning to study at U of Michigan?

U: I haven't decided yet, but I'm leaning towards psychology. How about you?

A: I actually graduated a few years ago, but now I'm thinking of starting my own business. I want to open a sports bar.

FINDRESTAURANT Triggered TOD Intent

Dialogue Continuation

U: That sounds exciting. Are you a big sports fan?

A: Definitely! Watching sports is one of my favorite pastimes. Speaking of which, have you visited any good sports bars around here yet

U: No, I haven't had a chance to check any out yet. Do you have any recommendations?

A: Definitely, there's a great place down the street called The Game Day Grill. They have amazing wings and a huge selection of beers on tap. You should definitely check it out sometime.

SalesBot 2.0

U: Yes, we grew up together. ...

U: That sounds exciting. ...

A: Definitely! ...

U: No, I haven't had a chance to check any out yet. Do you have any recommendations?

A: Definitely, there's a great place ...

Detection

HasIntent? Suggest?

Additional

Annotations

SalesBot 1.0

U: Yes, we grew up together. We are both going to U of Michigan this fall.

A: That's awesome! I'm hoping to start my own business soon. What do you do for a living?

U: I work at a grocery store. What kind of business are you looking to start? I hope it works out for you.

A: I'm thinking of starting a sports bar. I love sports and I think it would be a great place to start.

1. Chit-Chat Dialogue Revision

U: Yes, we grew up together. We are both going to U of Michigan this fall.

A: That's great! What are you planning to study at U of Michigan?

U: I haven't decided yet, but I'm leaning towards psychology. How about you?

A: I actually graduated a few years ago, but now I'm thinking of starting my own business. I want to open a sports bar.

Dialogue revision improves naturalness and expand the topic coverage

FINDRESTAURANT

Intent detection improves the TOD triggering capability

U: Yes, we grew up together. We are both going to U of Michigan this fall.

A: That's great! What are you planning to study at U of Michigan?

U: I haven't decided yet, but I'm leaning towards psychology. How about you?

A: I actually graduated a few years ago, but now I'm thinking of starting my own business. I want to open a sports bar.

Dialogue Continuation

U: That sounds exciting. Are you a big sports fan?

A: Definitely! Watching sports is one of my favorite pastimes. Speaking of which, <u>have you visited any good sports bars around here yet?</u>

U: No, I haven't had a chance to check any out yet. Do you have any recommendations?

A: Definitely, there's a great place down the street called The Game Day Grill. They have amazing wings and a huge selection of beers on tap. You should definitely check it out sometime.

Dialogue continuation focuses on smoothly transitioning to the topic

U: Yes, we grew up together. We are both going to U of Michigan this fall.

A: That's great! What are you planning to study at U of Michigan?

U: I haven't decided yet, but I'm leaning towards psychology. How about you?

A: I actually graduated a few years ago, but now I'm thinking of starting my own business. I want to open a sports bar.

U: That sounds exciting. Are you a big sports fan?

A: Definitely! Watching sports is one of my favorite pastimes. Speaking of which, have you visited any good sports bars around here yet?

U: No, I haven't had a chance to check any out yet. Do you have any recommendations?

A: Definitely, there's a great place down the street called The Game Day Grill. They have amazing wings and a huge selection of beers on tap. You should definitely check it out sometime.

4. Transition Boundary Detector

Transition boundary detector avoids diverging topics and finds timing to TOD

Annotations

Suggest? Transitioning is reasonable but more aggressive

SalesBot 1.0 vs. SalesBot 2.0 (Chang & Chen, 2023)

Simulated User

Simulated Salesperson

Thank you. It was a long time ago, but I still miss her. What do you do for a living?

I am a stay at home mom. It is very rewarding. How about you?

I work at the zoo. It's a lot of fun, and I get to spend time with my family.

What about your family?

FINDATTRACTION

Thank you. It was a long time ago, but I still miss her deeply.

I'm sorry for your loss. It sounds like she was very important to you. As for me, I'm also fortunate to have a family that I get to spend a lot of time with.

That's great to hear. I work at the zoo, and it's a fun job that allows me to support my family.

That sounds like a really cool job. What kind of animals do you work with at the zoo?

Mostly primates, but there are also elephants, lions, and bears.

Wow, that must be exciting to work with such a variety of animals. Have you had the chance to explore the tourist attractions in the area?

Not really, I've been so focused on work and family lately that I haven't had much time to go out and explore.

Does SalesBot 2.0 have better quality? Human evaluation?

Solution:

LLM-EVAL: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models

(Lin & Chen, NLP4ConvAl 2023)

LLM-Eval (Lin & Chen, 2023)

LLM-Eval

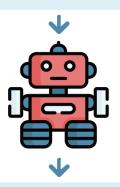
{evaluation schema}

Score the following dialogue response generated on a continuous scale from 0.0 to 5.0.

Context:

: My cat likes to eat cream.

Dialogue response :



Appropriateness: 3.0

Cotent: 2.5 Grammer: 4.0 Relevence: 2.0

LLM has a reasonable capability of evaluating dialogue responses

r / ρ (%)	TopicalChat	PersonaChat	ConvAI2	DD	ED	DSTC6	Average
BLEU-4	21.6 / 29.6	13.5 / 9.0	0.3 / 12.8	7.5 / 18.4	-5.1 / 0.2	13.1 / 29.8	8.5 / 16.6
ROUGE-L	27.5 / 28.7	6.6 / 3.8	13.6 / 14.0	15.4 / 14.7	2.9 / -1.3	33.2 / 32.6	16.5 / 15.4
BERTScore	29.8 / 32.5	15.2 / 12.2	22.5 / 22.4	12.9 / 10.0	4.6 / 3.3	36.9 / 33.7	20.3 / 19.0
DEB	18.0 / 11.6	29.1 / 37.3	42.6 / 50.4	33.7 / 36.3	35.6 / 39.5	21.1 / 21.4	30.0 / 32.8
GRADE	20.0 / 21.7	35.8 / 35.2	56.6 / 57.1	27.8 / 25.3	33.0 / 29.7	11.9 / 12.2	30.9 / 30.2
USR	41.2 / 42.3	44.0 / 41.8	50.1 / 50.0	5.7 / 5.7	26.4 / 25.5	18.4 / 16.6	31.0 / 30.3
USL-H	32.2 / 34.0	49.5 / 52.3	44.3 / 45.7	10.8 / 9.3	29.3 / 23.5	21.7 / 17.9	31.3 / 30.5
without human re	ference						
LLM-EVAL 0-5	<u>55.7</u> / <u>58.3</u>	51.0 / 48.0	<u>59.3</u> / <u>59.6</u>	31.8 / 32.2	42.1 / 41.4	43.3 / 41.1	<u>47.2</u> / 46.8
LLM-EVAL 0-100	49.0 / 49.9	53.3 / 51.5	61.3 / 61.8	34.6 / <u>34.9</u>	43.2 / 42.3	44.0 / 41.8	47.6 / <u>47.0</u>
with human refer	ence						
LLM-EVAL 0-5	56.5 / 59.4	55.4 / 53.1	43.1 / 43.8	.320 / 32.2	40.0 / 40.1	<u>47.0</u> / <u>45.5</u>	45.7 / 45.7
LLM-EVAL 0-100	55.6 / 57.1	<u>53.8</u> / <u>52.7</u>	45.6 / 45.9	33.4 / 34.0	43.5 / 43.2	49.8 / 49.9	47.0 / 47.1

LLM-Eval better correlates with human-judged scores than all existing metrics

LLM-Eval (Lin & Chen, 2023)

LLM-Eval works good on not only single-turn but multi-turn evaluation

r / ρ (%)	DailyDialog-PE	F	ED	DSTC9	Average
ΤΤΡ(70)	Turn-Level	Turn-Level	Dialog-Level	Dialog-Level	Average
DynaEval	16.7 / 16.0	31.9 / 32.3	50.3 / 54.7	9.3 / 10.1	27.1 / 28.3
USL-H	68.8 / 69.9	20.1 / 18.9	7.3 / 15.2	10.5 / 10.5	26.7 / 28.6
FlowScore	-	-6.5 / -5.5	-7.3 / -0.3	14.7 / 14.0	0.3 / 2.7
GPTScore	-	- /38.3	- /54.3	-	- /46.3
LLM-EVAL 0-5	<u>71.0</u> / 71.3	60.4 / 50.9	67.6 / 71.4	<u>15.9</u> / <u>16.5</u>	53.7 / 52.5
LLM-EVAL 0-100	71.4 / <u>71.0</u>	<u>59.7</u> / <u>49.9</u>	<u>64.4</u> / <u>70.4</u>	16.1 / 18.6	<u>52.9</u> / <u>52.5</u>

Idea: LLM-Eval scores can be the proxy of human evaluation

Dialogue Quality Comparison

	#Chit-Chat Turn	#Transition Turn	#Total Turn	Naturalness ↑	Consistency ↑
SalesBot 1.0	4.49	1.00	5.49	3.574	2.656
SalesBot 2.0	5.22	4.55	9.29	4.258	4.026

SalesBot 2.0	Yes	No	Total
HasIntent?	4,149	1,197	5,391
Suggest?	5,167	224	5,391
Both		182	

less unsuitable dialogues (unnatural & aggressive)

SalesBots 2.0 has better quality than 1.0 for better usage

Future Conversational Ads

My son is 5 and my daughter is 2.

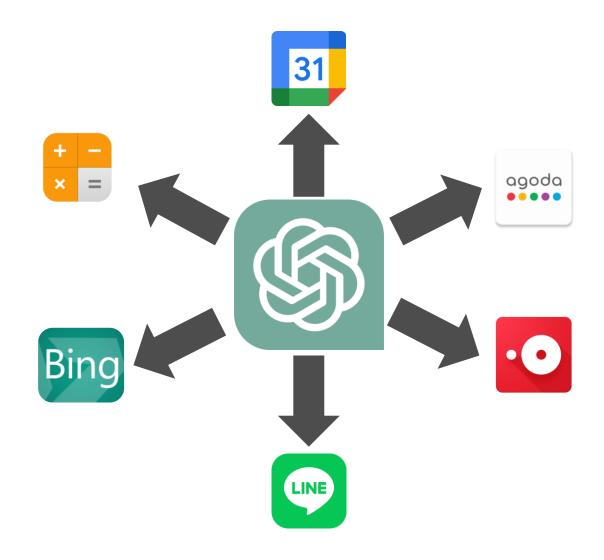
They are slightly naughty, but I love them so much. They are so cute!!

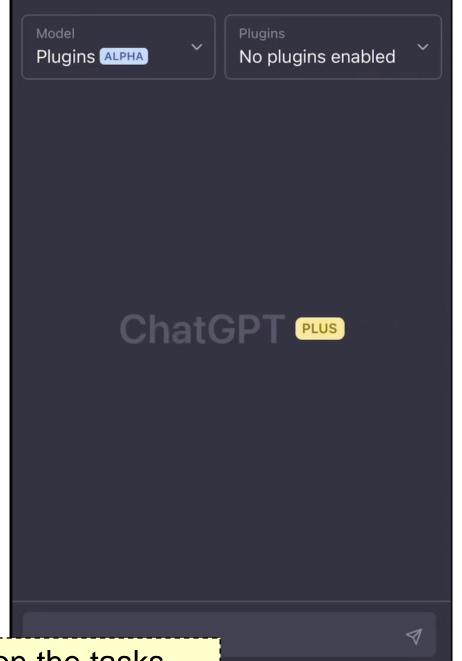
That's adorable. You must be very busy.

My husband and I enjoyed watching movies, but currently we don't have any time to go out for movie.

I have some alternatives for you if you really like watching movies. You can still enjoy movies at home; for example, Disney+ and ...

ChatGPT Plugins





Human should explicitly mention the tasks

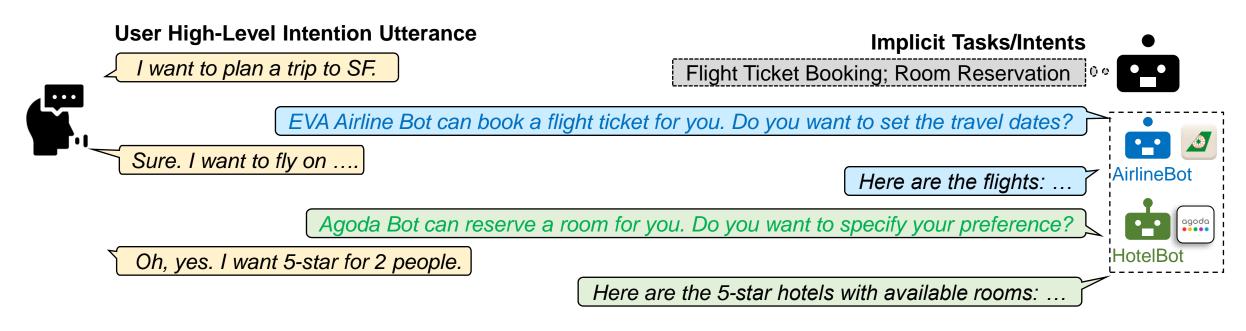
Solution:

Zero-Shot Prompting for Implicit Intent Prediction and Recommendation with Commonsense Reasoning

(Kuo & Chen, ACL Findings 2023)

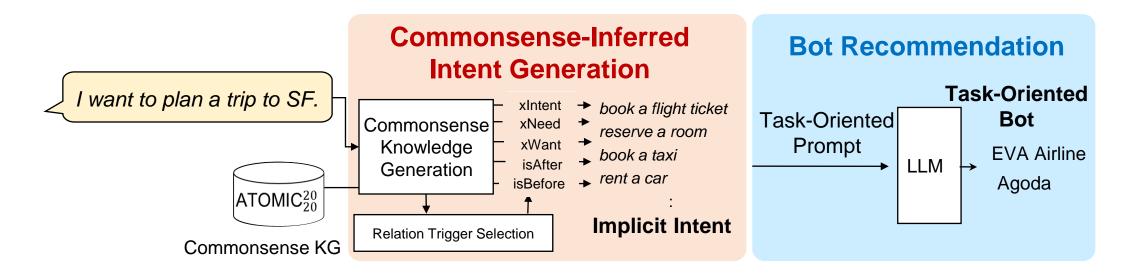
Human Understand High-Level Intention

 Goal: users interact in <u>high-level descriptions</u> and the agent learns how to plan dialogues



Idea: utilize implicit intents to bridge a high-level description and task-specific bots

Commonsense-Inferred Bot Recommendation



- 1st component: given a user's high-level intention, we generate implicit taskoriented intents
- 2nd component: we utilize the task-specific intents to recommend proper bots

Commonsense can provide the agent guidance for bot recommendation

Commonsense-Inferred Bot Recommendation

Q1: Is adding implicit intents (2-stage) for bridging useful?

A1: YES

Method	Р	R	F1	Human Score	_
1-Stage Baseline	30.3	20.6	23.7	1.73 ± 1.03	(1) Irrelevant
2-Stage GPT-3 Prompting	28.6	41.7	31.8	2.11 ± 0.46	(2) Acceptable
Our 2-Stage Commonsense	36.0	35.7	32.9	2.18 ± 0.34	(3) Useful

Q2: Is commonsense KG better than GPT-3 prompting?

A2: YES

Q3: Is adding reasons more convincing for recommendation?

A3: YES

Method	Win	Lose	Tie
Ours vs. 2-Stage GPT-3 Prompting	57.6	40.2	2.2
Ours vs. Ours w/o Reasons	55.1	38.8	6.1

Recommendation Example

We are planning to celebrate friend's birthday at a restaurant in [City].				
1-Stage Prompting	Tinder (Lifestyle), Grindr (Lifestyle)	1.83		
2-Stage Prompting	Zomato can help to book the restaurant in advance. WhatsApp can find out about their contact information.	2.00		
Ours	WhatsApp can help have a good time and to celebrate a friend's birthday. OpenTable can help book a table at the restaurant and go to the restaurant.	2.67		
Ours w/o Reasons	WhatsApp (Communication), OpenTable (Food & Drink)	2.17		

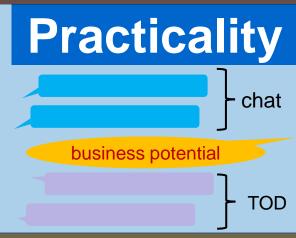
Using commonsense-inferred intents achieves a better precision and human score

Robustness

- ✓ LatticeLM for preserving uncertainty
- ✓ Contrastive learning with only textual information

 Contrastive Pre-training learns error-invariant sentence embeddings

- Supervised CL with Self Distillation improves robustness to noises from ASR and labels
- ✓ SalesBot simulates unlimited data bridging two types of agents
 - Reasonable quality
 - Data/simulators for learning (SL/RL) end-to-end agents with sales' behavior
- ✓ Commonsense bridges users' high-level intention and task bots
 - Better recommendation & more convincing



Scalability

Robustness

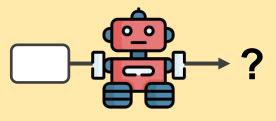
- ✓ LatticeLM for preserving uncertainty
- ✓ Contrastive learning with only textual information

 Contrastive Pre-training learns error-invariant sentence embeddings

- Supervised CL with Self Distillation improves robustness to noises from ASR and labels
- ✓ SalesBot simulates unlimited data bridging two types of agents
 - Reasonable quality
 - Data/simulators for learning (SL/RL) end-to-end agents with sales' behavior
- ✓ Commonsense bridges users' high-level intention and task bots
 - Better recommendation & more convincing

Practicality chat business potential TOD

Scalability



- ✓ LLMs rewrites data towards better naturalness and consistency
 - Diverse domain coverage
 - Smooth transition
- ✓ LLM-Eval better correlates with human-judged scores
 - Addressing an important issue in NLG tasks

Taiwan-LLaMa: LMs for Taiwanese Culture

https://github.com/MiuLab/taiwan-llama

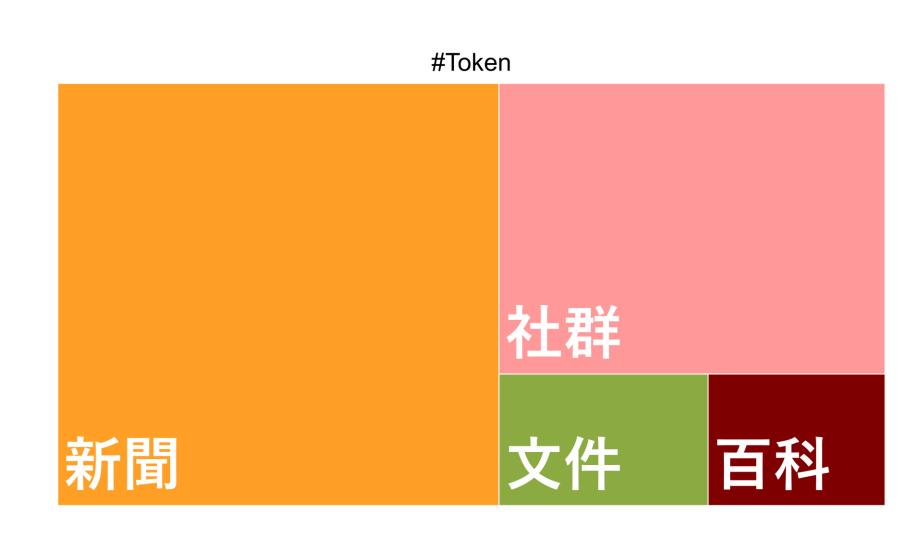
Language Models for Taiwanese Culture

Code License Apache 2.0

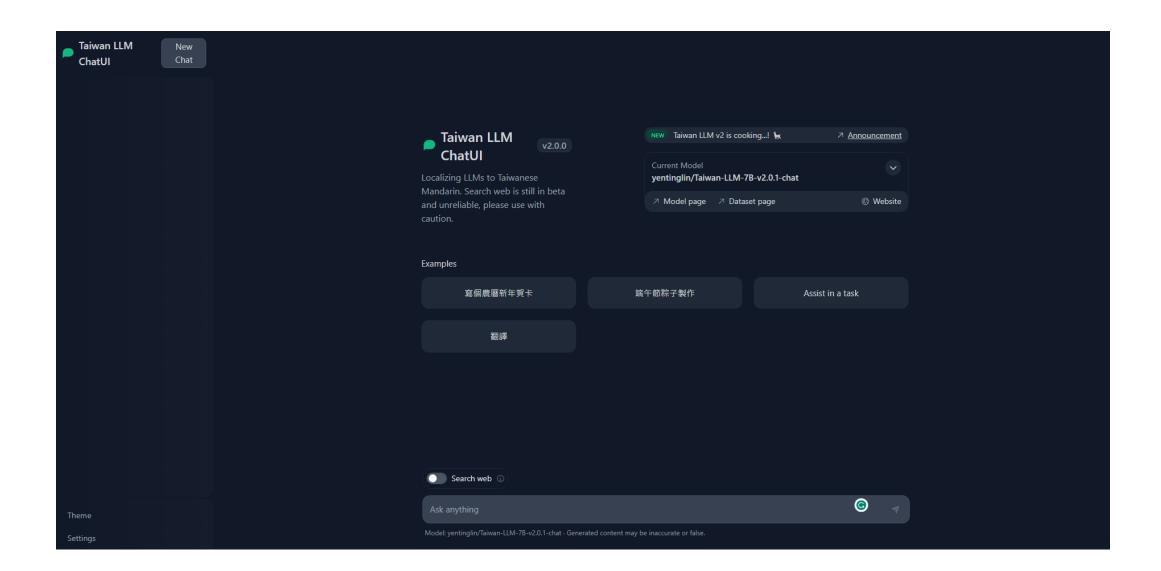
Data License CC By NC 4.0

Pretraining Data (v2.0)

- News
- Social Media
- Legal Documents
- Wikipedia-zh
- Web Data



Try Taiwan-LLaMa v2.0 http://twllm.com/



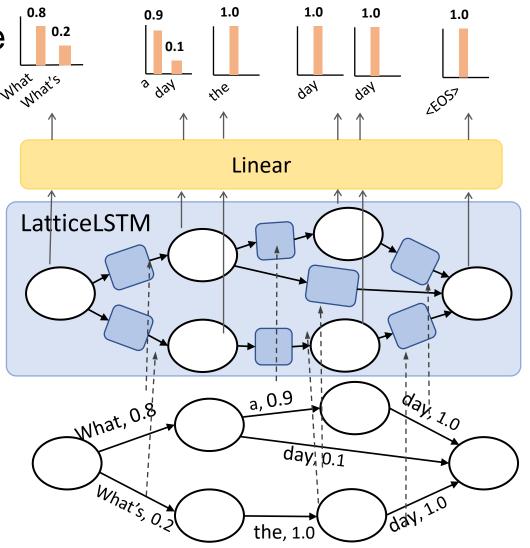
- Yun-Nung (Vivian) Chen
- Associate Professor, National Taiwan University
- y.v.chen@ieee.org / http://vivianchen.idv.tw

Appendix

Lattice Language Modeling

- 1) LatticeLSTM encodes nodes of a lattice
- 2) The goal is to predict the outgoing transitions (words) given a node's representation
- The one-hypothesis lattice reduces to normal language modeling

Issue: LatticeLSTM runs prohibitively slow



Ablation Study

$$\mathcal{L}_{pt} = \mathcal{L}_c + \lambda_{mlm} \cdot \mathcal{L}_{mlm}$$

$$\mathcal{L}_{ft} = \mathcal{L}_{ce} + \lambda_d \mathcal{L}_d + \lambda_{hard} \mathcal{L}_{hard} + \lambda_{soft} \mathcal{L}_{soft}$$

Pre-Training	Fine-Tuning	SLURP	ATIS	TREC6
Full	Full	85.26	95.10	86.36
No \mathcal{L}_{mlm}	Full	84.83	93.75	85.32
No \mathcal{L}_c	Full	85.15	95.00	85.53
Full	No $\mathcal{L}_{hard} + \mathcal{L}_{soft}$	85.14	94.83	86.08
Full	No $\mathcal{L}_d + \mathcal{L}_{soft}$	84.77	94.75	85.60
Full	No \mathcal{L}_{soft}	84.81	94.65	86.20

All parts in the proposed approach are necessary to achieve better SLU performance.

Improvement of Different WER

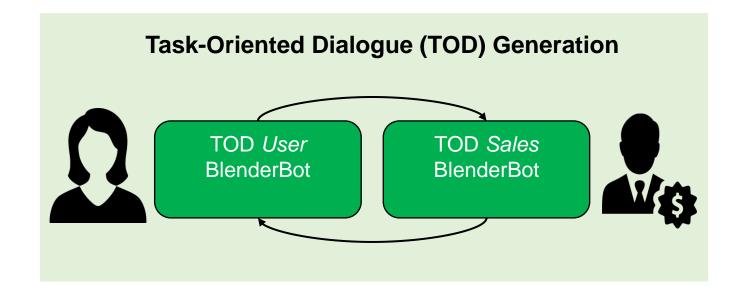
		SLURP WER Interval				
Pre-Training	Fine-Tuning	Clean =0	Low (0, 0.16]	Medium (0.16, 0.40]	High >0.4	All
RoBERTa	Direct	95.69	92.41	85.89	56.71	83.97
Phoneme-BERT	Direct	94.97	92.34	85.87	57.20	83.78
SimCSE	Direct	95.55	93.47	86.82	57.59	84.47
Proposed	Direct	95.54	93.86	86.68	57.72	84.51
RoBERTa	Proposed	96.59	94.27	86.70	57.24	84.87
Phoneme-BERT	Proposed	95.61	93.42	86.87	57.50	84.48
SimCSE	Proposed	96.57	94.54	87.39	58.01	85.25
Proposed	Proposed	96.08	94.41	87.63	58.72	85.26

Proposed approach is more effective when WER is higher

Proposed fine-tuning can generalize to diverse pre-training strategies for better SLU results

Task-Oriented Dialogue Generation

- Task-Oriented Simulation
 - Two BlenderBot simulators are additionally trained on
 - user turns to simulate users
 - agent turns to simulate salespersons
 - These turns are taken from task-oriented dialogues.



Transition Turn Generation

Template-based Generation:

Use a template sentence to trigger the corresponding task-oriented user

reaction

	Template-based generation]
User:	I like to read a lot. I also like to go to the	
	movies. What about yourself? - FindMovies	
Sales:	Do you want to find movies by genre and op-	
	tionally director?	Template Transition
User:	I'm looking for a movie to watch. A regular	
	showing would be fine.	

Generative-based Generation:

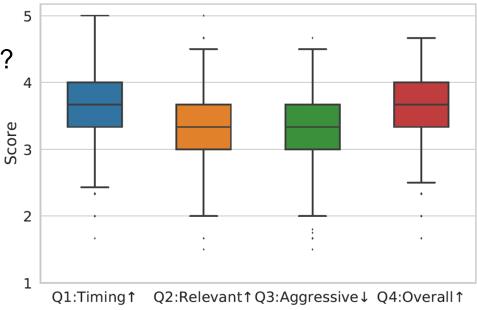
Re-generate the transition turn for better fluency and diversity

User:	Generative-based Re-generation I like to read a lot. I also like to go to the movies. What about yourself?	
Sales:	Are you interested in watching any movie?	Generated Transition
User:	I'm looking for a movie to watch. A regular showing would be fine.	

Human Evaluation

Transition turn quality

- Q1 Timing: Is it a good timing to make the transition?
- Q2 Relevance: Is the transition relevant to the conversation context?
- Q3 Aggressiveness: Is the transition aggressive?
- Q4 Overall: Do you think it is overall a good transition?



Average scores over 3 workers (4000 dialogues)

All scores above 3 (neutral) demonstrates reasonable quality of the generated data